Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563004

RESUMO

Objectives: To test the hypothesis that 'live high-base train high-interval train low' (HiHiLo) altitude training, compared to 'live low-train high' (LoHi), yields greater benefits on performance and physiological adaptations. Methods: Sixteen young male middle-distance runners (age, 17.0 ± 1.5 y; body mass, 58.8 ± 4.9 kg; body height, 176.3 ± 4.3 cm; training years, 3-5 y; training distance per week, 30-60 km.wk-1) with a peak oxygen uptake averaging ~65 ml.min-1.kg-1 trained in a normobaric hypoxia chamber (simulated altitude of ~2,500 m, monitored by heart rate ~170 bpm; thrice weekly) for 3 weeks. During this period, the HiHiLo group (n = 8) stayed in normobaric hypoxia (at ~2,800 m; 10 h.day-1), while the LoHi group (n = 8) resided near sea level. Before and immediately after the intervention, peak oxygen uptake and exercise-induced arterial hypoxemia responses (incremental cycle test) as well as running performance and time-domain heart rate variability (5-km time trial) were assessed. Hematological variables were monitored at baseline and on days 1, 7, 14 and 21 during the intervention. Results: Peak oxygen uptake and running performance did not differ before and after the intervention in either group (all P > 0.05). Exercise-induced arterial hypoxemia responses, measured both at submaximal (240 W) and maximal loads during the incremental test, and log-transformed root mean square of successive R-R intervals during the 4-min post-run recovery period, did not change (all P > 0.05). Hematocrit, mean reticulocyte absolute count and reticulocyte percentage increased above baseline levels on day 21 of the intervention (all P < 0.001), irrespective of group. Conclusions: Well-trained runners undertaking base training at moderate simulated altitude for 3 weeks, with or without hypoxic residence, showed no performance improvement, also with unchanged time-domain heart rate variability and exercise-induced arterial hypoxemia responses.


Assuntos
Altitude , Tolerância ao Exercício , Masculino , Humanos , Adolescente , Consumo de Oxigênio/fisiologia , Hipóxia , Adaptação Fisiológica , Oxigênio
2.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806822

RESUMO

Periodized carbohydrate availability can enhance exercise capacity, but the effects of short-term fat adaptation carbohydrate restoration (FACR) diets on metabolic responses and exercise performance in endurance athletes have not been conclusively determined. This study aimed to investigate the effect of a FACR diet on measures of resting metabolism, exercise metabolism, and exercise performance. Well-trained male runners (n = 8) completed a FACR dietary intervention (five days' carbohydrate < 20% and fat > 60% energy, plus one-day carbohydrate ≥ 70% energy), and a control high-carbohydrate (HCHO) diet for six days (carbohydrate > 60% energy; fat < 20% energy) in a randomized crossover design. Pre- and post-intervention metabolic measures included resting metabolic rate (RMR), respiratory quotient (RQ), maximum fat oxidation rate during exercise (MFO), and maximum fat oxidation intensity (FATmax). Measures of exercise performance included maximal oxygen uptake (VO2max), running economy (RE), and 5 km running time trial (5 km-TT). In FACR compared with HCHO, there were significant improvements in FATmax (p = 0.006) and RE (p = 0.048). There were no significant differences (p > 0.05) between FACR and HCHO in RMR, RQ, VO2max, or 5 km-TT. Findings suggest that a short-term (six days) FACR diet may facilitate increased fat oxidation and submaximal exercise economy but does not improve 5 km-TT performance.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta , Exercício Físico/psicologia , Adolescente , Adulto , Atletas , Desempenho Atlético , Exercício Físico/fisiologia , Glicogênio , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Inquéritos e Questionários , Adulto Jovem
3.
J Int Soc Sports Nutr ; 17(1): 42, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778175

RESUMO

OBJECTIVE: Previous investigations suggest that appropriate nutritional interventions may reduce delayed onset muscle soreness (DOMS). This study examined the effect of D-ribose supplementation on DOMS induced by plyometric exercise. METHODS: For the purpose of inducing DOMS, 21 untrained male college students performed a lower-limb plyometric exercise session that involved 7 sets of 20 consecutive frog hops with 90-s of rest between each set. Muscle soreness was measured with a visual analogue scale 1-h before, 24-h after, and 48-h after exercise. Subjects were then randomly placed into the D-ribose group (DRIB, n = 11) and the placebo group (PLAC, n = 10) to assure equivalent BMI and muscle soreness. After a 14-d washout/recovery period, subjects performed the same exercise session, with DRIB ingesting a 200 ml solution containing 15 g D-ribose 1-h before, 1-h, 12-h, 24-h, and 36-h after exercise, and PLAC ingesting a calorically equivalent placebo of the same volume and taste containing sorbitol and ß-cyclodextrin. Muscle soreness and isokinetic muscle strength were measured, and venous blood was assessed for markers of muscle damage and oxidative stress 1-h before, 24-h and 48-h after exercise. RESULTS: In DRIB, muscle soreness after 24-h and 48-h in the second exercise session were significantly lower (p < 0.01) than was experienced in the first exercise session. In the second exercise, blood-related markers of muscle soreness, including creatine kinase, lactate dehydrogenase (LDH), myoglobin and malondialdehyde (MDA) in DRIB after 24-h were lower in DRIB after 24-h than in PLAC (MDA, p < 0.05; rest outcomes, p < 0.01). In addition, LDH and MDA in DRIB were significantly lower (p < 0.01) after 24-h in DRIB than in PLAC. No difference was found in isokinetic muscle strength and oxidative stress markers, including superoxide dismutase and total antioxidant capacity, between DRIB and PLAC after 24-h and 48-h. CONCLUSION: D-ribose supplementation reduces muscle soreness, improves recovery of muscle damage, and inhibits the formation of lipid peroxides. Young adult males performing plyometric exercise are likely to realize a DOMS reduction through consumption of D-ribose in 15 g/doses both before (1-h) and after (1-h, 12-h, 24-h, 36-h) exercise. These results suggest that appropriately timed consumption of D-ribose may induce a similar alleviation of exercise-induced DOMS in the general public.


Assuntos
Suplementos Nutricionais , Mialgia/prevenção & controle , Exercício Pliométrico/efeitos adversos , Ribose/administração & dosagem , Biomarcadores/sangue , Humanos , Extremidade Inferior/fisiologia , Masculino , Força Muscular , Mialgia/etiologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...